1,531 research outputs found

    Laughlin's wave functions, Coulomb gases and expansions of the discriminant

    Full text link
    In the context of the fractional quantum Hall effect, we investigate Laughlin's celebrated ansatz for the groud state wave function at fractional filling of the lowest Landau level. Interpreting its normalization in terms of a one component plasma, we find the effect of an additional quadrupolar field on the free energy, and derive estimates for the thermodynamically equivalent spherical plasma. In a second part, we present various methods for expanding the wave function in terms of Slater determinants, and obtain sum rules for the coefficients. We also address the apparently simpler question of counting the number of such Slater states using the theory of integral polytopes.Comment: 97 pages, using harvmac (with big option recommended) and epsf, 7 figures available upon request, Saclay preprint Spht 93/12

    Yang-Baxter equation in spin chains with long range interactions

    Get PDF
    We consider the su(n) su(n) spin chains with long range interactions and the spin generalization of the Calogero-Sutherland models. We show that their properties derive from a transfer matrix obeying the Yang-Baxter equation. We obtain the expression of the conserved quantities and we diagonalize them.Comment: Saclay-t93/00

    Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice

    Full text link
    We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low density regime, the system phase-separates into a well defined superconducting core and a fully polarized metallic cloud surrounding it. We argue that the superconducting phase corresponds to a 1D analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of tightly bound bosonic pairs with a finite center-of-mass momentum that scales linearly with the magnetization. In the large density limit, the system allows for four phases: in the core, we either find a Fock state of localized pairs or a metallic shell with free spin-down fermions moving in a fully filled background of spin-up fermions. As the magnetization increases, the Fock state disappears to give room for a metallic phase, with a partially polarized superconducting FFLO shell and a fully polarized metallic cloud surrounding the core.Comment: 4 pages, 5 fig

    Correlation functions of the one-dimensional attractive Bose gas

    Full text link
    The zero-temperature correlation functions of the one-dimensional attractive Bose gas with delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for large number of particles, analogous to a M\"ossbauer effect.Comment: 4 pages, 2 figure

    Diagonalization of an Integrable Discretization of the Repulsive Delta Bose Gas on the Circle

    Full text link
    We introduce an integrable lattice discretization of the quantum system of n bosonic particles on a ring interacting pairwise via repulsive delta potentials. The corresponding (finite-dimensional) spectral problem of the integrable lattice model is solved by means of the Bethe Ansatz method. The resulting eigenfunctions turn out to be given by specializations of the Hall-Littlewood polynomials. In the continuum limit the solution of the repulsive delta Bose gas due to Lieb and Liniger is recovered, including the orthogonality of the Bethe wave functions first proved by Dorlas (extending previous work of C.N. Yang and C.P. Yang).Comment: 25 pages, LaTe

    Spin- and entanglement-dynamics in the central spin model with homogeneous couplings

    Full text link
    We calculate exactly the time-dependent reduced density matrix for the central spin in the central-spin model with homogeneous Heisenberg couplings. Therefrom, the dynamics and the entanglement entropy of the central spin are obtained. A rich variety of behaviors is found, depending on the initial state of the bath spins. For an initially unpolarized unentangled bath, the polarization of the central spin decays to zero in the thermodynamic limit, while its entanglement entropy becomes maximal. On the other hand, if the unpolarized environment is initially in an eigenstate of the total bath spin, the central spin and the entanglement entropy exhibit persistent monochromatic large-amplitude oscillations. This raises the question to what extent entanglement of the bath spins prevents decoherence of the central spin.Comment: 8 pages, 2 figures, typos corrected, published versio

    Emergence of Wigner molecules in one-dimensional systems of repulsive fermions under harmonic confinement

    Full text link
    A Bethe-Ansatz spin-density functional approach is developed to evaluate the ground-state density profile in a system of repulsively interacting spin-1/2 fermions inside a quasi-one-dimensional harmonic well. The approach allows for the formation of antiferromagnetic quasi-order with increasing coupling strength and reproduces with high accuracy the exact solution that is available for the two-fermion system.Comment: 3 pages, 2 figures, submitte

    Classical Dynamical Systems from q-algebras:"cluster" variables and explicit solutions

    Full text link
    A general procedure to get the explicit solution of the equations of motion for N-body classical Hamiltonian systems equipped with coalgebra symmetry is introduced by defining a set of appropriate collective variables which are based on the iterations of the coproduct map on the generators of the algebra. In this way several examples of N-body dynamical systems obtained from q-Poisson algebras are explicitly solved: the q-deformed version of the sl(2) Calogero-Gaudin system (q-CG), a q-Poincare' Gaudin system and a system of Ruijsenaars type arising from the same (non co-boundary) q-deformation of the (1+1) Poincare' algebra. Also, a unified interpretation of all these systems as different Poisson-Lie dynamics on the same three dimensional solvable Lie group is given.Comment: 19 Latex pages, No figure
    corecore